The Removal of Cu (II) Ions from Aqueous Solutions on Synthetic Zeolite NaA

نویسندگان

  • Dimitar Georgiev
  • Bogdan Bogdanov
  • Yancho Hristov
  • Irena Markovska
چکیده

In this study the adsorption of Cu (II) ions from aqueous solutions on synthetic zeolite NaA was evaluated. The effect of solution temperature and the determination of the kinetic parameters of adsorption of Cu(II) from aqueous solution on zeolite NaA is important in understanding the adsorption mechanism. Variables of the system include adsorption time, temperature (293328K), initial solution concentration and pH for the system. The sorption kinetics of the copper ions were found to be strongly dependent on pH (the optimum pH 3-5), solute ion concentration and temperature (293 – 328 K). It was found, the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Cu(II) onto ziolite NaA, suggesting that the adsorption mechanism might be a chemisorptions process The activation energy of adsorption (Ea) was determined as Cu(II) 13.5 kJ mol. The low value of Ea shows that Cu(II) adsorption process by zeolite NaA may be an activated chemical adsorption. The thermodynamic parameters (∆G, ∆H, and ∆S) were also determined from the temperature dependence. The results show that the process of adsorption Cu(II) is spontaneous and endothermic process and rise in temperature favors the adsorption. Keywords—Zeolite NaA, adsorption, adsorption capacity, kinetic sorption

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite

The study presented in this article investigated the removal of copper ions from aqueous solutions by a synthetic hydrogel-forming adsorbent polymer based on sodium alginate (SA) and hydroxy apatite (HA) nanoparticles. The effect of adding Zeolite on the adsorption performance of this hydrogel was also investigated, and the optimum amount of Zeolite was determined by changing its quantity. The ...

متن کامل

Preparation of Nanochitosan as an Effective Sorbent for the Removal of Copper Ions from Aqueous Solutions

The most important pollutants in wastewater are heavy metal ions. In this paper, the effects of various parameters such as pH, contact time, initial concentration, and temperature on the adsorption of Cu (II) by nanochitosan (NCS) was investigated in batch experiment. Nanochitosan was prepared based on ionic gelation and charac­terized by means of Fourier Transform Infrared Spectroscopy (FTIR),...

متن کامل

Removal of Strontium Ions by Synthetic Nano Sodalite Zeolite from Aqueous Solution

In this research, the zeolite sodalite, as an inorganic ion exchange material, was chemically produced in the template-free synthesis and evaluated in order to facilitate the sorption of strontium ions from aqueous solutions in batch operations onto acid treated zeolite with dilute H2SO4 solutions. The following indicates what the batch experiments included: a sorbent amount of 0.25 g in 100 mL...

متن کامل

Removal of Pb(II) and Cu(II) Ions from ‎Aqueous Solutions by Cadmium Sulfide ‎Nanoparticles

   In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...

متن کامل

The kinetics of the removal of copper ions from aqueous solutions using magnetic nanoparticles supported on activated carbon

Removal of Cu(II) from aqueous solution supplies is possible through the process of adsorption. One of these processes involves the preparation of magnetic nanoparticles on activated carbon (AC). Adsorbed coppre ions on the surface of Fe3O4-AC are separated from aqueous solutions using external magnetic fields. In the present study, magnetic nanoparticles were synthesized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012